The Fourier Pseudospectral Method with a Restrain Operator for the Korteweg-de Vries Equation

Ma He-ping and Guo Ben-yu
Department of Mathematics, Shanghai University of Science and Technology, Shanghai, China

Received December 28, 1984; revised October 16, 1985

Abstract

In this paper we develop a Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation. We prove the generalized stability of the schemes and give convergence estimations depending on the smoothness of the solution of the P.D.E. (C) 1986 Academic Press, Inc.

Recent publications in spectral methods for nonlinear partial differential equations provide a new potent solution technique (sec [1-9]). In many of the relevant papers, pseudospectral methods are used, because they are more efficient than spectral methods (see [10-15]). But sometimes pseudospectral methods have a nonlinear instability which causes an anomalous increase of energy, or weakens the nonlinearity of the solution. In order to eliminate these phenomena, filtering or smoothing techniques are used (see [16-18]).

In this paper a restrain operator R is used to develop a semi-discrete or fully discrete Fourier pseudospectral method for the Korteweg-de Vries (K.d.V.) equation. Generalized stability and convergence estimates depending on the smoothness of the solution of the P.D.E. are proved.

I. The Schemes

Consider the K.d.V. equation with periodic boundary condition:

$$
\begin{align*}
\partial_{t} u+u u_{x}+u_{x x x} & =0, & & -\infty<x<\infty, 0 \leqslant t \leqslant T, \\
u(x+1, t) & =u(x, t), & & -\infty<x<\infty, 0 \leqslant t \leqslant T, \tag{1.1}\\
u(x, 0) & =u_{0}(x), & & -\infty<x<\infty .
\end{align*}
$$

Let $x \in I=(0,1), L^{2}(I)$ with the inner product (\cdot, \cdot) and the norm $\|\cdot\|$. For any positive integer n, the semi-norm and the norm of $H^{n}(I)$ are denoted by $|\cdot|_{n}$ and $\|\cdot\|_{n}$, respectively. Let $C_{(p)}^{\infty}(I)$ be the set of infinitely differentiable functions with
period 1, defined on $R . H_{(p)}^{i}(I)$ is the closure of $C_{(p)}^{\infty}(I)$ in $H^{n}(I)$. For any real $\sigma>0$, define $H_{(p)}^{c}(I)$ by complex interpolation between $H_{[p)}^{[\sigma]}(I)$ and $H_{[p]}^{[\sigma]+1}(I)$ where [$\left.\sigma\right]$ denotes the largest integer which is smaller than σ. We have

$$
H_{(p)}^{\sigma}(I)=\left\{\left.U \in L^{2}(I)\left|\sum_{k=-\infty}^{\infty}(1+|k|)^{2 \sigma}\right| \hat{U}_{k}\right|^{2}<\infty, U(x)=U(x+1)\right\}
$$

where $\hat{U}_{k}=\left(U, e^{2 \pi i k x}\right)$.
Let A be a Banach space. $C(0, T ; A)$ is a set of strongly continuous functions from $[0, T]$ to A and $L^{2}(0, T ; A)$ is a set of strongly measurable functions $u(t)$ from $(0, T)$ to A satisfying

$$
\|u\|_{L^{2}(0, T: A)}=\left(\int_{0}^{T}\|u(t)\|_{A}^{2} d t\right)^{1 / 2}<\infty
$$

Other similar notations have the usual meanings.
For any positive integer N, set

$$
v_{N}=\operatorname{span}\left\{e^{2 \pi i k x}| | k \mid \leqslant N\right\}
$$

and let \dot{v}_{N} be a subspace of v_{N} of real-valued functions.
Let $h=1 /(2 N+1)$ be the mesh size in variable x and $x_{j}=j h(j=0,1, \ldots, 2 N)$. The discrete inner product and norm are defined by

$$
(u, v)_{N}=h \sum_{j=0}^{2 N} u\left(x_{j}\right) \overline{v\left(x_{i}\right)}, \quad\|u\|_{N}=(u ; u)_{N}^{1 / 2} .
$$

Let $P_{N}: L^{2}(I) \rightarrow v_{N}$ be the orthogonal projection operator, i.e.,

$$
\begin{equation*}
\left(p_{N} u, \varphi\right)=(u, \varphi), \quad \forall \varphi \in v_{N}, \tag{1.2}
\end{equation*}
$$

and $p_{C}: C(\bar{I}) \rightarrow v_{N}$ be the interpolation operator such that

$$
\begin{equation*}
p_{C} u\left(x_{i}\right)=u\left(x_{j}\right), \quad 0 \leqslant j \leqslant 2 N . \tag{1.3}
\end{equation*}
$$

For any $u, v \in C(\bar{I})$, we can prove [16]

$$
\begin{equation*}
(u, v)_{N}=\left(p_{C} u, p_{C} v\right)_{N}=\left(p_{C} u, p_{C} v\right) . \tag{1.4}
\end{equation*}
$$

Approximation to (1.1) by Fourier pseudospectral methods directly needs the estimation

$$
\begin{equation*}
\left|\left(u u_{x}, w\right)_{N}\right|=\left|\left(p_{C}\left(u u_{x}\right), p_{C} w\right)\right| \leqslant C\|u\|_{N}^{2}=C\|u\|^{2}, \quad \forall u \in v_{N}, \tag{1,5}
\end{equation*}
$$

where C is a constant depending only on w in v_{N}, in order to get the stability and
convergence in L^{2}-norm. But (1.5) may not be true. As an example, we consider the functions

$$
\begin{aligned}
w & =1-2 \sin 2 \pi x=1+i\left(e^{2 \pi i x}-e^{-2 \pi i x}\right), \\
u & =\sum_{|k| \leqslant N} a_{k} e^{2 \pi i k x}
\end{aligned}
$$

and obtain from (1.4)

$$
\left(u u_{x}, w\right)_{N}-\left(p_{N}\left(u u_{x}\right), w\right)+\left(\left(p_{C}-p_{N}\right)\left(u u_{x}\right), w\right)
$$

Since

$$
\left|\left(p_{N}\left(u u_{x}\right), w\right)\right|=\left|\left(u u_{x}, w\right)\right|=\frac{1}{2}\left|\left(u^{2}, w_{x}\right)\right| \leqslant C\left\|w_{x}\right\|_{L^{\infty}}\|u\|^{2}
$$

and

$$
\begin{aligned}
\left|\left(\left(p_{C}-p_{N}\right)\left(u u_{x}\right), w\right)\right| & =\left|\left(\sum_{|k| \leqslant N} \sum_{\substack{| ||\leqslant N\\
| k-l \mid>N}} 2 \pi i l a_{l} a_{k-l} e^{2 \pi i k x}, w\right)\right| \\
& =\left|2 \pi i\left\{N a_{N} a_{-1-N} \overline{(-i)}+(-N) a_{-N} a_{1+N} \bar{l}\right\}\right| \\
& =2 \pi N\left|a_{N}^{2}+a_{-N}^{2}\right|
\end{aligned}
$$

(1.5) can not be true. Obviously the trouble is only due to the higher frequencies. So we use the operator $R=R(\gamma)$ defined below to improve the scheme.

Guo Ben-yu [7, 8] pointed out that a better result can be obtained in solving numerically P.D.E. by using the generalized Fourier method (see [19]). Let $\gamma \geqslant 1$ and

$$
u=\sum_{|k| \leqslant N} a_{k} e^{2 \pi i k x}
$$

we define $R=R(\gamma)$ by

$$
\begin{equation*}
R u=\sum_{|k| \leqslant N}\left(1-\left(\frac{|k|}{N}\right)^{\gamma}\right) a_{k} e^{2 \pi t k x} \tag{1.6}
\end{equation*}
$$

In order to approximate the nonlinear term $u u_{x}$ reasonably we define the operator $J_{C}: v_{N} \times v_{N} \rightarrow v_{N}$ as

$$
J_{C}(u, v)=\frac{1}{3} p_{C}\left(u_{x} R v\right)+\frac{1}{3}\left(p_{C}(u R v)\right)_{x} .
$$

If u, v, and $w \in \dot{v}_{N}$, then we have from (1.4)

$$
\begin{equation*}
\left(J_{C}(u, v), w\right)+\left(J_{C}(w, v), u\right)=0 \tag{1.7}
\end{equation*}
$$

The semi-discrete pseudospectral method for the problem (1.1) is to find u_{C} in \dot{v}_{N} such that

$$
\begin{align*}
\partial_{t} u_{C}+J_{C}\left(u_{C}, u_{C}\right)+u_{C x x x} & =0, & & -\infty<x<\infty, t>0, \tag{1.8}\\
u_{C}(x, 0) & =p_{C} u_{0}(x), & & -\infty<x<\infty .
\end{align*}
$$

By (1.7), the solution of (1.8) for all $t \geqslant 0$ satisfies

$$
\left\|u_{C}(t)\right\|=\left\|u_{C}(0)\right\|
$$

Let τ be the mesh size in variable t. Denote $u^{k}(x)=u(x, k \tau)$ by u^{k}. Define

$$
u_{t}^{k}=\frac{1}{\tau}\left(u^{k+1}-u^{k}\right)
$$

and

$$
\|u\|_{\sigma}=\max _{k}\left\|u^{k}\right\|_{\sigma}
$$

The fully discrete pseudospectral method for problem (1.1) is to find u_{c}^{k} in \dot{b}_{N} such that

$$
\begin{align*}
u_{c t}^{k}+J_{c}\left(u_{c}^{k}+\delta_{1} \tau u_{c t}^{k}, u_{c}^{k}\right)+u_{c x x x}^{k}+\delta_{2} \tau u_{c x x x t}^{k} & =0, & & -\infty<x<\infty, k \geqslant 0, \tag{1.9}\\
u_{c}^{0} & =p_{C} u_{0}, & & -\infty<x<\infty .
\end{align*}
$$

If $\delta_{1}=\delta_{2}=\frac{1}{2}$, then

$$
\left\|u_{c}^{k}\right\|=\left\|u_{c}^{0}\right\|, \quad \forall k \geqslant 0
$$

II. The Main Theoretical Results

First consider the generalized stability of scheme (1.8) (the definition can be found in [20]). If u_{C} and the right term in (1.8) have errors \tilde{u} and $\bar{f} \in \dot{v}_{N}$, respectively, then

$$
\begin{equation*}
\partial_{t} \tilde{u}+J_{C}\left(\tilde{u}, u_{C}+\tilde{u}\right)+J_{C}\left(u_{C}, \tilde{u}\right)+\tilde{u}_{x x x}=\tilde{f} \tag{2.1}
\end{equation*}
$$

Theorem 1. If $\varepsilon>0$, then there exists a positive constant C depending on $\left\|u_{C}\right\|_{L^{\infty}\left(0, T ; H^{3,2+5}\right)}$ such that for any $t \leqslant T$,

$$
\|\tilde{u}(t)\|^{2} \leqslant e^{c t}\left\{\|\tilde{u}(0)\|^{2}+\int_{0}^{T}\|\tilde{f}(s)\|^{2} d s\right\} .
$$

Next consider the convergence of (1.8).

Theorem 2. If $\gamma \geqslant \sigma \geqslant 3$ and $u \in C\left(0, T ; H_{(p)}^{\sigma}(I)\right)$, then there exists a positive constant C depending on $\|u\|_{L^{\infty}\left(0, T, H^{\sigma}\right)}$ such that for any $t \leqslant T$,

$$
\left\|u_{C}(t)-u(t)\right\| \leqslant C N^{1-\sigma}
$$

Now consider the generalized stability of (1.9). Suppose that u_{c}^{k} and the right term have, respectively, the error \tilde{u}^{k} and $\tilde{f}^{k} \in \dot{v}_{N}$, then

$$
\begin{equation*}
\tilde{u}_{t}^{k}+J_{C}\left(\tilde{u}^{k}+\delta_{1} \tau \tilde{u}_{t}^{k}, u_{c}^{k}+\tilde{u}^{k}\right)+J_{C}\left(u_{c}^{k}+\delta_{1} \tau u_{c t}^{k}, \tilde{u}^{k}\right)+\tilde{u}_{x x x}^{k}+\delta_{2} \tau \tilde{u}_{x x x t}^{k}=\tilde{f}^{k} \tag{2.2}
\end{equation*}
$$

Let

$$
\rho^{n}=\left\|\tilde{u}^{0}\right\|^{2}+\tau \sum_{k=0}^{n-1}\left\|\tilde{f}^{k}\right\|^{2}
$$

and

$$
E^{n}=\left\|\tilde{u}^{n}\right\|^{2}+\alpha_{0} \tau^{2} \sum_{k=0}^{n-1}\left\|\tilde{u}_{t}^{k}\right\|^{2}
$$

Theorem 3. If $\delta_{1}=\delta_{2}>\frac{1}{2}, \tau N^{2} \leqslant d<\infty$, and $\varepsilon>0$, then there exists a positive constant C depending on $\left\|\left\|u_{C}\right\|_{3 / 2+\varepsilon}\right.$ such that for all $n \tau \leqslant T$,

$$
E^{n} \leqslant c \rho^{n} e^{c n \tau}
$$

Theorem 4. If $\delta_{2}>\frac{1}{2}, \tau N^{3} \leqslant d<\infty$, and $\varepsilon>0$, then there exist positive constants C and δ depending on $\left\|u_{C}\right\|_{3 / 2+\varepsilon}$ such that when $\rho^{[T / \tau]} \leqslant \delta$ and $n \tau \leqslant T$,

$$
E^{n} \leqslant c \rho^{n} e^{e n \tau}
$$

Theorem 5. If $u \in C^{1}\left(0, T ; H_{(p)}^{1}(I)\right) \cap C\left(0, T ; H_{(p)}^{\sigma}(I)\right)(\gamma \geqslant \sigma \geqslant 3)$ and $\partial_{t} u \in H^{1}$ $\left(0, T ; L^{2}(I)\right)$, then there exists a positive constant C depending on u such that for any $n \tau \leqslant T$,
(i) if $\delta_{1}=\delta_{2}>\frac{1}{2}$ and $\tau N^{2} \leqslant d<\infty$, then

$$
\left\|u_{c}^{n}-u^{n}\right\| \leqslant C\left\{\tau+N^{1-\sigma}\right\}
$$

(ii) if $\delta_{2}>\frac{1}{2}, \tau N^{3} \leqslant d<\infty$, and $\tau+N^{1-\sigma}$ suitably small, then

$$
\left\|u_{c}^{n}-u^{n}\right\| \leqslant C\left\{\tau+N^{1-\sigma}\right\} .
$$

III. Numerical Results

Example 1. Consider the Korteweg-de Vries equation

$$
\partial_{t} \varphi+(1+\varphi) \varphi_{x}+\left(\lambda^{2} / 2\right) \varphi_{x x x}=0
$$

which has the solitary wave

$$
\begin{equation*}
\varphi(x, t)=u_{0}+a \operatorname{sech}^{2}\left[\left(a / b \lambda^{2}\right)^{1 / 2}(x-c t)\right], \tag{3.1}
\end{equation*}
$$

where

$$
c=1+u_{0}+a / 3 .
$$

Schamel and Elsässer [10] computed the above problem using both the spectral method (SM) and the pseudospectral method (PSM). The time integration used a stable fourth-order integration procedure. In Fig. 1, the solution with $\hat{\lambda}=10^{-2}$, $a=0.2$, and

$$
u_{0}=-2 \lambda(b a)^{1 / 2} \tanh \left[(a / 24)^{1 / 2} / \lambda\right]
$$

(so that $\int_{0}^{1} \varphi(x, t) d x=0$ for all times) is shown at $t=1.25$ corresponding to 1000 time steps. Initially the soliton was centered at $x=-0.5$ (which corresponds to $x=0.5$ because of periodicity). The SM solution agrees with the analytical solution φ (full curve), but the PSM solution φ_{1} (dashed curve) has a large error due to the aliasing interaction.

By letting $u=1+\varphi$, we run the example using scheme (1.9) with $\delta_{1}=\delta_{2}=\frac{1}{2}$ and $\gamma=5$. The solution φ_{2} is shown in Fig. 1 (dotted curve). The error agrees with the convergence estimation in Section II (see Table I). Four time iterations per time step are required for the nonlinear term.

Example 2. Consider the problem

$$
\begin{array}{cl}
\partial_{t} u+\beta u u_{x}+\varepsilon u_{x x x}-0, & 0 \leqslant x \leqslant 2,0<t \leqslant T, \\
u(x, 0)=3 C \operatorname{sech}^{2}(A x+D), & 0 \leqslant x \leqslant 2 . \tag{3.2}
\end{array}
$$

The solution of (3.2) is

$$
u(x, t)=3 C \operatorname{sech}^{2}(A x-B t+D)
$$

Fig. 1. The Korteweg-de Vries soliton at $t=1.25, \varphi$ is the solitary wave (3.1). φ_{1} is computed with PSM in [10] (dashed line, $h=1 / 32$). φ_{2} is computed with (1.9) (dotted line, $h=1 / 16$).

TABLE I
The L^{\prime}-Error and L^{∞}-Error of Scheme (1.9) at Time T, $\tau=0.00125, h=1 / 16$

T	L^{2}-error	L^{∞}-crror
0.25	0.1970×10^{-2}	0.5728×10^{-2}
0.50	0.3298×10^{-2}	1.2137×10^{-2}
0.75	0.4469×10^{-2}	1.3146×10^{-2}
1.00	0.5596×10^{-2}	1.8146×10^{-2}
1.25	0.6754×10^{-2}	1.9735×10^{-2}

where

$$
A=\frac{1}{2}(\beta C / \varepsilon)^{1 / 2}, \quad B=\frac{1}{2} \beta C(\beta C / \varepsilon)^{1 / 2} .
$$

For parameter values

$$
C=0.3, \quad D=-6, \quad \beta=1, \quad \varepsilon=4.84 \times 10^{-4},
$$

the calculation is carried out for $x \in[0,2]$.
The L^{∞}-error of both the Hopscotch difference scheme (sce [22]) and the scheme (1.9) with $\gamma=10$ and $\delta_{1}=\delta_{2}=0.6$ are shown in Tables II and III. The scheme (1.9) gives better results than the Hopscotch scheme.

IV. Some Lemmas

In order to prove the theorems in Section II, we need the following lemmas, the constants in which are independent of N and the function u and may be different in different cases.

Lemma 1 [16]. If $0 \leqslant \mu \leqslant \sigma$ and $u \in H_{(p)}^{\sigma}(I)$, then

$$
\begin{gather*}
\left\|p_{N} u-u\right\|_{\mu} \leqslant C N^{\mu-\sigma}|u|_{\sigma} \tag{4.1}\\
\left\|p_{N} u\right\|_{\sigma} \leqslant C\|u\|_{\sigma} \tag{4.2}
\end{gather*}
$$

TABLE II
The Maximum Errors at Time $T, \tau=0.025, h=1 / 16$

\boldsymbol{T}	Hopscotch scheme	Scheme (1.9)
0.25	0.1533	0.0343
0.50	0.2044	0.0458
0.75	0.2717	0.0627
1.00	0.2969	0.0797

TABLE III
The Maximum Errors at Time $T, \tau=0.0005, h=1 / 32$

T	Hopscotch scheme	Scheme (1.9)
0.25	2.231×10^{-2}	0.5997×10^{-3}
0.50	3.764×10^{-2}	1.228×10^{-3}
0.75	5.003×10^{-2}	1.873×10^{-3}
1.00	6.723×10^{-2}	2.637×10^{-3}

and if $\sigma>\frac{1}{2}$, then

$$
\begin{gather*}
\left\|p_{c} u-u\right\|_{\mu} \leqslant C N^{\mu-\sigma}|u|_{\sigma} \tag{4.3}\\
\left\|p_{c} u\right\|_{\sigma} \leqslant C\|u\|_{\sigma} \tag{4.4}
\end{gather*}
$$

Lemma 2 (Inverse Inequality) [16]. If $0 \leqslant \mu \leqslant \sigma$ and $u \in v_{N}$, then

$$
\begin{equation*}
\|u\|_{\sigma} \leqslant C N^{\sigma-\mu}\|u\|_{\mu} \tag{4.5}
\end{equation*}
$$

Lemma 3. If $u \in H^{1}(I)$, then

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leqslant C\|u\|^{1 / 2}\|u\|_{1}^{1 / 2} . \tag{4.6}
\end{equation*}
$$

Lemma 4. For any $0 \leqslant \mu \leqslant \sigma \leqslant \gamma$, if $u \in v_{N}$, then

$$
\begin{equation*}
\|R u-u\|_{\mu} \leqslant C N^{\mu-\sigma}|u|_{\sigma}, \tag{4.7}
\end{equation*}
$$

and if $u \in H_{(p)}^{\sigma}(I)$, then

$$
\begin{equation*}
\left\|R p_{N} u-u\right\|_{\mu} \leqslant C N^{\mu-\sigma}|u|_{\sigma} . \tag{4.8}
\end{equation*}
$$

Proof. Let

$$
u=\sum_{|k| \leqslant N} a_{k} e^{2 \pi i k x},
$$

then

$$
\begin{aligned}
\|R u-u\|_{\mu}^{2} & \leqslant C^{\prime} \sum_{|k| \leqslant N}\left(1+|2 \pi k|^{2 \mu}\right)\left(\frac{|k|}{N}\right)^{2 \gamma}\left|a_{k}\right|^{2} \\
& \leqslant 2 C^{\prime} \sum_{|k| \leqslant N}|2 \pi k|^{2 \mu}|2 \pi k|^{2 \sigma}|2 \pi k|^{-2 \sigma}\left|a_{k}\right|^{2} \\
& \leqslant C N^{2(\mu-\sigma)} \sum_{|k| \leqslant N}|2 \pi k|^{2 \sigma}\left|a_{k}\right|^{2} \\
& =C N^{2(\mu-\sigma)}|u|_{\sigma}^{2} .
\end{aligned}
$$

Proof of (4.8) follows from (4.7) and Lemma 1.

Now let

$$
u=\sum_{|k| \leqslant N} a_{k} e^{2 \pi i k x}
$$

and

$$
v=\sum_{|k| \leqslant N} b_{k} e^{2 \pi i k x}
$$

Assume

$$
\begin{equation*}
a_{k+2 N+1}=a_{k}, \quad b_{k+2 N+1}=b_{k} \tag{4.9}
\end{equation*}
$$

and define the circle convolution

$$
\begin{equation*}
u * v=\sum_{|k| \leqslant N} \sum_{|| | \leqslant N} a_{l} b_{k-1} e^{2 \pi i k x} \tag{4.10}
\end{equation*}
$$

It is easy to show that $u * v=v * u$.
Lemma 5. If $u, v \in v_{N}$ and $w \in \dot{v}_{N}$, then

$$
\begin{align*}
p_{c}(u v) & =u * v \tag{4.11}\\
(u * w, v) & =(u, w * v) \tag{4.12}
\end{align*}
$$

Proof. It is sufficient to prove

$$
u * v\left(x_{j}\right)=u\left(x_{j}\right) v\left(x_{j}\right), \quad 0 \leqslant j \leqslant 2 N
$$

Since

$$
\begin{aligned}
u * v\left(x_{j}\right) & =\sum_{|\eta| \leqslant N} a_{l} e^{2 \pi i l x_{j}} \sum_{|k| \leqslant N} b_{k-l} e^{2 \pi i(k-l) x_{j}} \\
& -\sum_{|M| \leqslant N} a_{l} e^{2 \pi i l x_{j}} v\left(x_{j}\right)=u\left(x_{j}\right) v\left(x_{j}\right),
\end{aligned}
$$

(4.11) follows. Then from (4.11) and (1.4),

$$
\begin{aligned}
(u * w, v) & =\left(p_{c}(u w), p_{c} v\right)=(u w, v)_{N} \\
& =(u, w v)_{N}=(u, w * v) .
\end{aligned}
$$

Lemma 6. For any $\varepsilon>0$, if $u, v \in v_{N}$ and $w \in H_{(p)}^{3 / 2+\varepsilon}(I)$, then

$$
\begin{align*}
& \left|\left(u_{x} * R v, w\right)+\left(u * R v_{x}, w\right)\right| \leqslant C_{\varepsilon} \gamma\|w\|_{3 / 2+\varepsilon}\|u\|\|v\|, \tag{4.13}\\
& \left|\left(u_{x} * R u, w\right)-\left(u * R u_{x}, w\right)\right| \leqslant C_{\varepsilon} \gamma\|w\|_{3 / 2+\varepsilon}\|u\|^{2} \tag{4.14}
\end{align*}
$$

where $R=R(\gamma)(\gamma \geqslant 1)$ is defined by (1.6).

Proof. Assume that a_{k} and b_{k} are the coefficients of u and v respectively such that they have been extended as (4.9). Let

$$
w=\sum_{k=-\infty}^{\infty} C_{k} e^{2 \pi i k x}
$$

then

$$
p_{N} w=\sum_{|k| \leqslant N} C_{k} e^{2 \pi i k x}
$$

For any $|k| \leqslant N$ and $|l| \leqslant N$, define

$$
\begin{aligned}
r_{k, l} & =k-l+2 N+1, & & \text { if } k-l<-N, \\
& =k-l, & & \text { if }|k-l| \leqslant N, \\
& =k-l-(2 N+1), & & \text { if } k-l>N .
\end{aligned}
$$

Clearly $r_{-k,-l}=-r_{k, l}$. Since

$$
\begin{aligned}
\left(u_{x} * R v, w\right) & =\left(u_{x} * R v, p_{N} w\right) \\
& =2 \pi i \sum_{|k| \leqslant N} \bar{C}_{k} \sum_{|| | \leqslant N}\left(1-\left|\frac{l}{N}\right|^{\gamma}\right) b_{i} r_{k, l} a_{k-l},
\end{aligned}
$$

and

$$
\begin{aligned}
\left(u * R v_{x}, w\right) & =\left(u * R v_{x}, p_{N} w\right) \\
& =2 \pi i \sum_{|k| \leqslant N} \bar{C}_{k} \sum_{|l| \leqslant N}\left(1-\left|\frac{l}{N}\right|^{\gamma}\right) l b_{i} a_{k-l},
\end{aligned}
$$

then

$$
\begin{align*}
I_{1} & \equiv\left(u_{x} * R v, w\right)+\left(u * R v_{x}, w\right) \\
& =2 \pi i \sum_{|k| \leqslant N} \bar{C}_{k} \sum_{|| | \leqslant N}\left(1-\left|\frac{1}{N}\right|^{\gamma}\right)\left(l+r_{k, l}\right) b_{l} a_{k-l} \\
& =2 \pi i \sum_{|k| \leqslant N}(1+|k|) \bar{C}_{k} \sum_{|l| \leqslant N} f_{k, l} b_{l} a_{k-l}, \tag{4.15}
\end{align*}
$$

where

$$
f_{k, i} \equiv\left(1-\left|\frac{l}{N}\right|^{\gamma}\right)\left(l+r_{k, l}\right) /(1+|k|) .
$$

Let

$$
g_{k, l} \equiv\left(1-\left\{\left.\frac{l}{N} \right\rvert\,\right)\left(l+r_{k, l}\right) /(1+|k|)\right.
$$

then

$$
\left|f_{k, l}\right| \leqslant \gamma\left|g_{k, l}\right|, \quad \forall|k|,|l| \leqslant N
$$

In order to estimate $\left|g_{k, l}\right|$ for the three following cases, only the case of $0 \leqslant l<N$ is considered because $g_{-k,-l}=-g_{k, l}$.

Case 1. $|k-l| \leqslant N$, then

$$
\left|g_{k, l}\right|=\frac{\left(1-\frac{l}{N}\right)|l+k-l|}{1+|k|} \leqslant 1
$$

Case 2. $k-l<-N$ and so $0<N-l<-k=|k|$, then

$$
\left|g_{k, l}\right|=\frac{(N-l)(2 N+1+k)}{N(1+|k|)} \leqslant \frac{|k|(2 N+1-|k|)}{(1+|k|) N} \leqslant 2 .
$$

Case 3. $k-l>N$. This is contrary to $l \geqslant 0$ and need not be considered. Therefore

$$
\left|f_{k, l}\right| \leqslant \gamma\left|g_{k, l}\right| \leqslant 2 \gamma, \quad \forall|k|,|l| \leqslant N,
$$

and from (4.15)

$$
\begin{align*}
\left|I_{1}\right| & \leqslant 4 \pi \gamma \sum_{|k| \leqslant N}(1+|k|)\left|C_{k}\right| \sum_{|| | \leqslant N}\left|b_{l}\right|\left|a_{k-l}\right| \\
& \leqslant 4 \pi \gamma \sum_{|k| \leqslant N}(1+|k|)\left|C_{k}\right|\left\{\sum_{|l| \leqslant N}\left|b_{l}\right|^{2}\right\}^{1 / 2}\left\{\sum_{|l| \leqslant N}\left|a_{k-l}\right|^{2}\right\}^{1 / 2} \\
& =4 \pi \gamma\|u\|\|v\| \sum_{|k| \leqslant N}(1+|k|)^{-(1 / 2+\varepsilon)}(1+|k|)^{3 / 2+\varepsilon}\left|C_{k}\right| \\
& \leqslant 4 \pi \gamma\|u\|\|v\|\left\{\sum_{|k| \leqslant N}(1+|k|)^{-(1+2 \varepsilon)}\right\}^{1 / 2}\left\{\sum_{|k| \leqslant N}(1+|k|)^{2(3 / 2+\varepsilon)}\left|C_{k}\right|^{2}\right\}^{1 / 2} \\
& \leqslant C_{\varepsilon} \gamma\|w\|_{3 / 2+\varepsilon}\|u\|\|v\|, \tag{4.16}
\end{align*}
$$

which completes the proof of (4.13).
On the other hand, since

$$
\begin{aligned}
\left(u_{x} * R u, w\right) & =\left(u_{x} * R u, p_{N} w\right) \\
& =2 \pi i \sum_{|k| \leqslant N} \bar{C}_{k} \sum_{|l| \leqslant N} l\left(1-\left|\frac{r_{k, i}}{N}\right|^{\gamma}\right) a_{l} a_{k-l},
\end{aligned}
$$

and

$$
\begin{aligned}
\left(u * R u_{x}, w\right) & =\left(u * R u_{x}, p_{N} w\right) \\
& =2 \pi i \sum_{|k| \leqslant N} \bar{C}_{k} \sum_{|| | \leqslant N} l\left(1-\left|\frac{l}{N}\right|^{\gamma}\right) a_{l} a_{k-t},
\end{aligned}
$$

then

$$
\begin{aligned}
I_{2} & \equiv\left(u_{x} * R u, w\right)-\left(u * R u_{x}, w\right) \\
& =2 \pi i \sum_{|k| \leqslant N} \bar{C}_{k} \sum_{|l| \leqslant N} l\left(\left|\frac{l}{N}\right|^{\gamma}-\left|\frac{r_{k l}}{N}\right|^{\gamma}\right) a_{l} a_{k-l} \\
& =2 \pi i \sum_{|k| \leqslant N}(1+|k|) \bar{C}_{k} \sum_{|l| \leqslant N} f_{k, l} a_{l} a_{k-l}
\end{aligned}
$$

where

$$
f_{k, l} \equiv l\left(\left|\frac{l}{N}\right|^{\gamma}-\left|\frac{r_{k, l}}{N}\right|^{\gamma}\right)(1+|k|) .
$$

Let

$$
g_{k, l} \equiv l\left(\left|\frac{l}{N}\right|-\left|\frac{r_{k, l}}{N}\right|\right) /(1+|k|)
$$

then

$$
\left|f_{k, l}\right| \leqslant \gamma\left|g_{k, l}\right|, \quad \forall|k|,|l| \leqslant N .
$$

In order to estimate $\left|g_{k, l}\right|$ for the three following cases, only the case of $0 \leqslant l \leqslant N$ is considered because $g_{-k,-l}=-g_{k, l}$.

Case 1. $0 \leqslant l \leqslant k$, then

$$
\left|g_{k, l}\right| \leqslant\left|\left|\frac{l}{N}\right|-\left|\frac{r_{k, l}}{N}\right|\right| \leqslant 1 .
$$

Case 2. $k<l \leqslant N+k$ and so $0<l-k=N$, then

$$
\left|g_{k, l}\right|=\frac{l|l-(l-k)|}{N(1+|k|)}=\frac{l|k|}{N(1+|k|)} \leqslant 1 .
$$

Case 3. $l>N+k$, so $k-l<N$ and $0 \leqslant N-l<-k=|k|$, then

$$
\begin{aligned}
\left|g_{k, l}\right| & \leqslant \frac{|l-(2 N+1+k-l)|}{1+|k|}=\frac{|2(N-l)+1-|k||}{1+|k|} \\
& \leqslant \max \left\{\frac{1+2(N-l)}{1+|k|}, \frac{|k|}{1+|k|}\right\} \leqslant 2 .
\end{aligned}
$$

Therefore

$$
\left|f_{k, l}\right| \leqslant \gamma\left|g_{k, l}\right| \leqslant 2 \gamma, \quad \forall|k|,|l| \leqslant N .
$$

Similarly using (4.16)

$$
\left|I_{2}\right| \leqslant C_{\varepsilon} \gamma\|w\|_{3 / 2+\varepsilon}\|u\|^{2}
$$

which completes the proof of (4.14).
The next result follows immediately from (4.13) and (4.14).
Lemma 7. If $\varepsilon>0$ and $w \in H_{(p)}^{3 / 2+\varepsilon}(I)$, then

$$
\begin{equation*}
\left|\left(u_{x} * R u, w\right)\right| \leqslant C_{\varepsilon} \gamma\|w\|_{3 / 2+\varepsilon}\|u\|^{2}, \quad \forall u \in v_{N} \tag{4.17}
\end{equation*}
$$

V. The Proofs of the Theorem

We now prove the theorems in Section II.
By (4.11), rewrite

$$
J_{C}(u, v)=\frac{1}{3} u_{x} * R v+\frac{1}{3}(u * R v)_{x}
$$

Proof of Theorem 1. By taking the inner product of (2.1) with $2 \tilde{u}$ and using (1.7)

$$
\partial_{t}\|\tilde{u}\|^{2}+2\left(J_{C}\left(u_{C}, \tilde{u}\right), \tilde{u}\right)=2(\tilde{f}, \tilde{u})
$$

Let $\varepsilon>0$. Since

$$
\begin{aligned}
\left|\left(u_{c x} * R \tilde{u}, \tilde{u}\right)\right| & =\left|\left(u_{c x} R \tilde{u}, \tilde{u}\right)_{N}\right| \\
& \leqslant\left\|u_{c x}\right\|_{L^{\infty}}\|R \tilde{u}\|_{N}\|\tilde{u}\|_{N} \leqslant c_{\varepsilon}\left\|u_{c}\right\|_{3 / 2+\varepsilon}\|\tilde{u}\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left(\left(u_{c} * R \tilde{u}\right)_{x}, \tilde{u}\right)\right| & =\left|\left(u_{c} * R \tilde{u}, \tilde{u}_{x}\right)\right| \\
& =\left|\left(\tilde{u}_{x} * R \tilde{u}, u_{c}\right)\right| \leqslant c_{\varepsilon} \gamma\left\|u_{c}\right\|_{3 / 2+\varepsilon}\|\tilde{u}\|^{2}
\end{aligned}
$$

then

$$
\begin{equation*}
\left|\left(J_{c}\left(u_{c}, \tilde{u}\right), \tilde{u}\right)\right| \leqslant c_{\varepsilon} \gamma\left\|u_{c}\right\|_{3 / 2+\varepsilon}\|\tilde{u}\|^{2} \tag{5.1}
\end{equation*}
$$

Therefore

$$
\partial_{t}\|\tilde{u}(t)\|^{2} \leqslant c_{\varepsilon} \gamma\left\|u_{c}\right\|_{L^{\infty}\left(0, T ; H^{3 / 2+\varepsilon}\right)}\|\tilde{u}(t)\|^{2}+\|\tilde{f}(t)\|^{2},
$$

and the conclusion of Theorem 1 follows.

Proof of Theorem 2. Let $w=p_{N} u$ and $\tilde{e}=u_{c}-w$ and using (1.1) and (1.8) produces

$$
\begin{equation*}
\partial_{t} \tilde{e}+J_{c}(\tilde{e}, w+\tilde{e})+J_{c}(w, \tilde{e})+\tilde{e}_{x x x}=f \tag{5,2}
\end{equation*}
$$

where

$$
f=\frac{1}{3}\left\{p_{N}\left(u u_{x}+\left(u^{2}\right)_{x}\right)-p_{c}\left(w_{x} R w\right)-\left(p_{c}(w R w)\right)_{x}\right\} .
$$

From Lemma 1 and Lemma 4

$$
\begin{aligned}
\left\|p_{N}\left(u u_{x}\right)-u u_{x}\right\| & \leqslant c^{\prime} N^{1-\sigma}\left|u u_{x}\right|_{\sigma-1} \leqslant c N^{1-\sigma}\|u\|_{\sigma}^{2}, \\
\left\|u u_{x}-w_{x} R w\right\| & \leqslant\left\|u u_{x}-u w_{x}\right\|+\left\|w_{x} u-w_{x} R w\right\| \\
& \leqslant\|u\|_{L^{\infty}}\left|u-p_{N} u\right|_{1}+\left\|w_{x}\right\|_{L^{\alpha}}\left\|u-R p_{N} u\right\| \\
& \leqslant c\left(\|u\|_{\sigma}\right) N^{1-\sigma},
\end{aligned}
$$

and

$$
\left\|w_{x} R w-p_{c}\left(w_{x} R w\right)\right\| \leqslant c^{\prime} N^{1-\sigma}\left|w_{x} R w\right|_{\sigma-1} \leqslant c N^{1-\sigma}\|u\|_{\sigma}^{2}
$$

so

$$
\left\|p_{N}\left(u u_{x}\right)-p_{c}\left(w_{x} R w\right)\right\| \leqslant c\left(\|u\|_{\sigma}\right) N^{1-\sigma} .
$$

Similarly

$$
\begin{aligned}
\left\|p_{N} u^{2}-u^{2}\right\| & \leqslant c N^{-\sigma}\|u\|_{\sigma}^{2}, \\
\left\|u^{2}-w u\right\| & \leqslant c N^{-\sigma}\|u\|_{L^{\infty}}|u|_{\sigma}, \\
\|w u-w R w\| & \leqslant c N^{-\sigma}\|w\|_{L^{\infty}}|u|_{\sigma}, \\
\left\|w R w-p_{c}(w R w)\right\| & \leqslant c N^{-\sigma}\|u\|_{\sigma}^{2} .
\end{aligned}
$$

Since

$$
\begin{align*}
\left\|p_{N}\left(u^{2}\right)_{x}-\left(p_{c}(w R w)\right)_{x}\right\| & =\mid p_{N} u^{2}-p_{c}(w R w) \|_{1} \\
& \leqslant c N\left\|p_{N} u^{2}-p_{c}(w R w)\right\| \leqslant c\left(\|u\|_{\sigma}\right) N^{1-\sigma}, \\
\|f\| & \leqslant c\left(\|u\|_{L^{*}\left(0, T ; H^{\top}\right)}\right) N^{1-\sigma} . \tag{5.3}
\end{align*}
$$

Also

$$
\begin{equation*}
\|\tilde{e}(0)\| \leqslant\left\|p_{c} u_{0}-u_{0}\right\|+\left\|u_{0}-p_{N} u_{0}\right\| \leqslant c N^{-\sigma}\left|u_{0}\right|_{\sigma} . \tag{5.4}
\end{equation*}
$$

Finally, apply Theorem 1 to Eq. (5.2) and use Lemma 1 and the triangle inequality to complete the proof.

Proof of Theorem 3. Taking the inner product of (2.2) with $2 \tilde{u}^{k}$ and $m \tau \tilde{u}_{t}^{k}$ ($m>0$), respectively, produces

$$
\begin{align*}
\left\|\tilde{u}^{k}\right\|_{t}^{2}- & \tau\left\|\tilde{u}_{t}^{k}\right\|^{2}+2 \delta_{1} \tau\left(J_{c}\left(\tilde{u}_{t}^{k}, u_{c}^{k}+\tilde{u}^{k}\right), \tilde{u}^{k}\right) \\
& +2\left(J_{c}\left(u_{c}^{k}+\delta_{1} \tau u_{c t}^{k}, \tilde{u}^{k}\right), \tilde{u}^{k}\right)+2 \delta_{2} \tau\left(\tilde{u}_{x x x t}^{k}, \tilde{u}^{k}\right) \\
= & 2\left(\tilde{f}^{k}, \tilde{u}^{k}\right) \tag{5.5}
\end{align*}
$$

and

$$
\begin{align*}
& m \tau\left\|\tilde{u}_{t}^{k}\right\|^{2}+m \tau\left(J_{c}\left(\tilde{u}^{k}, u_{c}^{k}+\tilde{u}^{k}\right), \tilde{u}_{t}^{k}\right) \\
& \quad \\
& \quad+m \tau\left(J_{c}\left(u_{c}^{k}+\delta_{1} \tau u_{c t}^{k}, \tilde{u}^{k}\right), \tilde{u}_{t}^{k}\right)+m \tau\left(\tilde{u}_{x x x}^{k}, \tilde{u}_{t}^{k}\right) \tag{5.6}\\
& =m \tau\left(\tilde{f}^{k}, \tilde{u}_{t}^{k}\right) .
\end{align*}
$$

Let $\varepsilon_{1}>0$. Combining (5.5) with (5.6) gives

$$
\begin{align*}
& \left\|\tilde{u}^{k}\right\|_{i}^{2}+\tau\left(m-1-\varepsilon_{1}\right)\left\|\tilde{u}_{i}^{k}\right\|^{2}+\sum_{i=1}^{4} F_{i} \\
& \quad \leqslant\left\|\tilde{u}^{k}\right\|^{2}+\left(1+\tau m^{2} / 4 \varepsilon_{1}\right)\left\|\tilde{j}^{k}\right\|^{2} \tag{5.7}
\end{align*}
$$

where

$$
\begin{aligned}
& F_{1}=2\left(J_{c}\left(u_{c}^{k}+\delta_{1} \tau u_{c t}^{k}, \tilde{u}^{k}\right), \tilde{u}^{k}\right), \\
& F_{2}=m \tau\left(J_{c}\left(u_{c}^{k}+\delta_{1} \tau u_{c t}^{k}, \tilde{u}^{k}\right), \tilde{u}_{t}^{k}\right), \\
& F_{3}=\tau\left(m-2 \delta_{1}\right)\left(J_{c}\left(\tilde{u}^{k}, u_{c}^{k}+\tilde{u}^{k}\right), \tilde{u}_{t}^{k}\right), \\
& F_{4}=\tau\left(m-2 \delta_{\imath}\right)\left(\tilde{u}_{t}^{k}, \tilde{u}_{x x x}^{k}\right) .
\end{aligned}
$$

Estimating $\left|F_{l}\right|$ using an argument similar to (5.1) produces

$$
\begin{aligned}
& \left|F_{1}\right| \leqslant c_{\varepsilon}\left\|u_{c}\right\|_{3 / 2+\varepsilon}\left\|\tilde{u}^{k}\right\|^{2} \\
& \left|F_{2}\right| \leqslant \tau \varepsilon_{1}\left\|\tilde{u}_{t}^{k}\right\|^{2}+\varepsilon_{1}^{-1} m^{2} \tau c\left(\left\|u_{c}\right\|_{1}\right) N^{2}\left\|\tilde{u}^{k}\right\|^{2} \\
& \left|F_{3}\right| \leqslant \tau \varepsilon_{1}\left\|\tilde{u}_{t}^{k}\right\|^{2}+\varepsilon_{1}^{-1} \tau\left(m-2 \delta_{1}\right)^{2} N^{2} c\left(\left\|u_{c}\right\|_{1}\right)\left\{\left\|\tilde{u}^{k}\right\|^{2}+N\left\|\tilde{u}^{k}\right\|^{4}\right\}, \\
& \left|F_{4}\right| \leqslant \tau \varepsilon_{1}\left\|\tilde{u}_{t}^{k}\right\|^{2}+\varepsilon_{1}^{-1} \tau\left(m-2 \delta_{2}\right)^{2} N^{6}\left\|\tilde{u}^{k}\right\|^{2} .
\end{aligned}
$$

Substituting the above estimation into (5.7) results in

$$
\begin{align*}
\left\|\tilde{u}^{k}\right\|_{t}^{2}+\tau\left(m-1-4 \varepsilon_{1}\right)\left\|\tilde{u}_{t}^{k}\right\|^{2} \leqslant & c\left(\left\|u_{c}\right\|_{3 / 2+\varepsilon}\right)\left\{\left(1+\varepsilon_{1}^{-1} m^{2} \tau N^{2}\right)\left\|\tilde{u}^{k}\right\|^{2}\right. \\
& +\varepsilon_{1}^{-1}\left(m-2 \delta_{1}\right)^{2} \tau N^{2}\left(\left\|\tilde{u}^{k}\right\|^{2}+N\left\|\tilde{u}^{k}\right\|^{4}\right) \\
& \left.+\varepsilon_{1}^{-1}\left(m-2 \delta_{2}\right)^{2} \tau N^{6}\left\|\tilde{u}^{k}\right\|^{2}+\left\|\tilde{f}^{k}\right\|^{2}\right\} . \tag{5.8}
\end{align*}
$$

By choosing $m>1$ properly and ε_{1} suitably small such that

$$
m-1-4 \varepsilon_{1}=\alpha_{0}>0
$$

and summing the formula (5.8) for all $0 \leqslant k \leqslant n-1$, we get

$$
\begin{align*}
\left\|\tilde{u}^{n}\right\|^{2}+\alpha_{0} \tau^{2} \sum_{k=0}^{n-1}\left\|\tilde{u}_{t}^{k}\right\|^{2} \leqslant & \left\|\tilde{u}^{0}\right\|^{2}+c\left(\left\|u_{c}\right\|_{3 / 2+\varepsilon}\right) \tau \sum_{k=0}^{n-1}\left\{\left(1+\tau N^{2}\right)\left\|\tilde{u}^{k}\right\|^{2}\right. \\
& +\left(m-2 \delta_{1}\right)^{2} \tau N^{2}\left(\left\|\tilde{u}^{k}\right\|^{2}+N\left\|\tilde{u}^{k}\right\|^{4}\right) \\
& \left.+\left(m-2 \delta_{2}\right)^{2} \tau N^{6}\left\|\tilde{u}^{k}\right\|^{2}+\left\|\tilde{f}^{k}\right\|^{2}\right\} . \tag{5.9}
\end{align*}
$$

Take $m=2 \delta_{1}=2 \delta_{2}>1$. From (5.9)

$$
E^{n} \leqslant c\left(\left\|u_{c}\right\|_{3 / 2+\varepsilon}\right)\left\{\rho^{n}+\tau \sum_{k=0}^{n-1} E^{k}\right\},
$$

and the conclusion of Theorem 3 follows.
The following lemma is required to establish the generalized stability of (1.9) with $\delta_{1} \leqslant \frac{1}{2}$.

Lemma 8 [21]. If the following conditions hold,
(i) E^{k} is a nonnegative function and M, C, and ρ are nonnegative constants,
(ii) for any $n \tau \leqslant T$, if $\max _{0 \leqslant k \leqslant n-1} E^{k} \leqslant M$, then

$$
E^{n} \leqslant \rho+c \tau \sum_{k=0}^{n-1} E^{k},
$$

(iii) $E^{0} \leqslant \rho \leqslant M e^{-c T}$,
then for any $n \tau \leqslant T$,

$$
E^{n} \leqslant \rho e^{e n \tau}
$$

Proof of Theorem 4. Take $m=2 \delta_{2}>1$ and let M be a positive constant. Assume $\max _{0 \leqslant k \leqslant n-1}\left\|\tilde{u}^{k}\right\| \leqslant M$, then from (5.9)

$$
E^{n} \leqslant c\left(\left\|u_{c}\right\|_{3 / 2+\varepsilon}, M\right) \cdot\left\{\rho^{n}+\tau \sum_{k=0}^{n-1} E^{k}\right\} .
$$

The conclusion follows from Lemma 9.
Proof of Theorem 5. Let $w^{k}=p_{N} u^{k}$ and $\tilde{e}^{k}=u_{c}^{k}-w^{k}$. From (1.1) and (1.9)

$$
\begin{equation*}
\tilde{e}_{t}^{k}+J_{c}\left(\tilde{e}^{k}+\delta_{1} \tau \tilde{e}_{t}^{k}, w^{k}+\tilde{e}^{k}\right)+J_{c}\left(w^{k}+\delta_{1} \tau w_{t}^{k}, \tilde{e}^{k}\right)+\left(\tilde{e}_{x x x}^{k}+\delta_{2} \tau \tilde{e}_{x x x t}^{k}\right)=f^{k} \tag{5.10}
\end{equation*}
$$

where

$$
f^{k}=\partial_{t} w^{k}+\delta_{2} \tau \partial_{t} w_{t}^{k}-w_{t}^{k}+p_{N}\left(u^{k} u_{x}^{k}\right)+\delta_{2} \tau p_{N}\left(u^{k} u_{x}^{k}\right)_{t}-J_{c}\left(w^{k}+\delta_{1} \tau w_{t}^{k}, w^{k}\right)
$$

To estimate $\left|f^{k}\right|$, let $t_{k}=k \tau$, and intergrating by parts,

$$
\partial_{t} u^{k}-u_{t}^{k}=-\frac{1}{\tau} \int_{t_{k}}^{t_{k+1}}\left(t_{k+1}-5\right) \partial_{t}^{2} u(x, s) d s
$$

and

$$
\begin{aligned}
\tau \sum_{k=0}^{n-1}\left\|\partial_{t} w^{k}-w_{t}^{k}\right\|^{2} & =\tau \sum_{k=0}^{n-1}\left\|p_{N}\left(\partial_{t} u^{k}-u_{t}^{k}\right)\right\| \\
& \leqslant \frac{c^{\prime}}{\tau} \sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k+1}}\left|t_{k+1}-s\right|^{2} d s \int_{t_{k}}^{t_{k+1}}\left\|\partial_{t}^{2} u(s)\right\|^{2} d s \\
& \leqslant c \tau^{2}\left\|\partial_{t}^{2} u\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\tau \sum_{k=0}^{n-1}\left\|\delta_{2} \tau \partial_{t} w_{t}^{k}\right\| & =\tau \sum_{k=0}^{n-1}\left\|\delta_{2} \tau p_{N}\left(\partial_{t} u^{k}\right)_{t}\right\|^{2} \\
& \leqslant c^{\prime} \tau \sum_{k=0}^{n-1} \int_{t_{k}}^{\tau_{k+1}} \cdot d s \int_{t_{k}}^{\tau_{k+1}}\left\|\partial_{t}^{2} u(s)\right\|^{2} d s \\
& \leqslant c \tau^{2}\left\|\partial_{t}^{2} u\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}
\end{aligned}
$$

From (5.3)

$$
\left\|p_{N}\left(u^{k} u_{x}^{k}\right)-J_{c}\left(w^{k}, w^{k}\right)\right\| \leqslant c\left(\|u\|_{L^{\infty}\left(0, T ; H^{\sigma}\right)}\right) N^{1-\sigma} .
$$

It is easy to show that

$$
\left\|\delta_{2} \tau p_{N}\left(u^{k} u_{x}^{k}\right)_{t}\right\| \leqslant c\left(\|u\|_{w^{1, \infty}\left(0, T ; H^{\prime}\right)}\right) \tau
$$

and

$$
\left\|\delta_{1} \tau J_{c}\left(w_{t}^{k}, w^{k}\right)\right\| \leqslant c\left(\|u\|_{w^{1, \infty}\left(0, T ; H^{1}\right)}\right) \tau
$$

whence

$$
\left\{\tau \sum_{k=0}^{n-1}\left\|f^{k}\right\|^{2}\right\}^{1 / 2} \leqslant c\left\{\tau+N^{1-\sigma}\right\}
$$

Also from (5.4)

$$
\left\|\tilde{e}^{0}\right\| \leqslant c N^{-\sigma}\left|u_{0}\right|_{\sigma}
$$

Finally, apply Theorem 3 or Theorem 4 to (5.10) and get the conclusions of Theorem 5 from Lemma 1 and the triangle inequality.

References

1. D. Gottlere and S. A. Orszag, Numerical analysis of spectral methods, CBMS-NSF, Regional Conference series in applied mathematics, 26 (1977), Philadelphia.
2. J. Gazdag, J. Comput. Phys. 20, 196 (1976).
3. J. P. Roache, J. Comput. Phys. 27, 204 (1978).
4. K. Abe and O. Inoue, J. Comput. Phys. 34, 202 (1980).
5. Y. Maday and A. Quarteroni, Numer. Math. 37, 321 (1981).
6. O. H. Hald, J. Comput. Phys. 40, 305 (1981).
7. Guo Ben-yu, Acta Math. Sinica (Beijing) 28, 1 (1985).
8. Guo Ben-yu, J. Comput. Math. 1, 353 (1983).
9. Guo Ben-yu and V. S. Manoranjan, IMA JNA, 5, 307 (1985).
10. H. SChamel and K. Elsässer, J. Comput. Phys. 22, 501 (1976).
11. J. Canosa and J. Gazdag, J. Comput. Phys. 23, 393 (1977).
12. B. Fornberg and G. B. Whitham, Philos. Trans. R. Soc. London 289, 373 (1978).
13. Y. Maday and A. Quarteroni, SIAM J. Numer. Anal. 19, 761 (1982).
14. J. E. Pasciak, SIAM J. Numer. Anal. 19, 142 (1982).
15. P. Cornille, J. Comput. Phys. 47, 146 (1982).
16. H. O. Kreiss and J. Oliger, SIAM J. Numer. Anal. 16, 421 (1979).
17. T. A. Zang and M. Y. Hussain in "Proc. of Seventh International Conference on Numerical Methods in Flaid Dynamics," (Springer-Verlag, Berlin/New York, 1980).
18. I. E. Harvey, Amer. J. Phys. 49, 747 (1981).
19. Cheng Mn-teh and Chen Yung-ho, Acta Sci. Natur. Univ. Pekinensis, 411 (1956).
20. Kuo Pen-yl, Sci. Sinica Ser. A 25, 702 (1982).
21. Guo Ben-yu, Difference Methods for Partial Differential Equations (Science Press, Beijing, 1986, in press).
22. I. S. Greig and I. L. Morris, J. Comput. Phys. 20, 64 (1976).
